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Abstract-This work considers transient radiative and conductive heat transfer in a rectangular, absorbing- 
emitting and isotropically scattering medium. An integral-equation method and a modified differential 
approximation are applied to the radiation part of the present problem. Then, the radiation part and the 
energy equation are solved by numerical methods simultaneously. Comparisons to results published 
elsewhere for the special cases of steady-state two-dimensional and transient one-dimensional heat transfer 
are made. The comparisons show that, along with a finite-difference scheme, the integral-equation method 
generates very accurate results. The influence of aspect ratios, scattering albedos and conduction-to- 

radiation parameters is investigated. 

1. INTRODUCTION 

IN A NUMBER of engineering applications it is necessary 
to analyze radiative and conductive heat transfer in a 
semi-transparent medium. Examples of such media 
are glasses, low-density refractories and ceramics. 
Lists of previous work on combined radiation and 
conduction heat transfer can be found in a review 
article [l] and a textbook [2]. Most of the previous 
work is confined to one-dimensional cases. In recent 
years, the steady-state multidimensional case has been 
a subject of increasing interest. The P-N approxi- 
mation [3], the finite-element method [4] and the rig- 
orous method [5] were applied to examine the inter- 
action of conduction and radiation in a rectangular, 
absorbing and emitting medium. Previous studies [6- 
8] and a few references cited therein have taken the 
scattering effects into account. However, little work 
considering transient multidimensional radiation and 
conduction has been reported. Amlin and Korpela [9] 
applied the P-l approximation of radiation to study 
the transient conductive and radiative heat transfer in 
a rectangular absorbing-emitting medium. Dere- 
vyanko and Koltun [lo] proposed a combination of 
the Monte Carlo method and the finite-difference 
method for calculating the two-dimensional non- 
steady radiative-conductive heat transfer. The above 
work on transient multidimensional problems has not 
taken scattering into account. 

The present work considers transient radiative and 
conductive heat transfer in a rectangular, absorbing- 
emitting and isotropically scattering medium. The 
analysis of interactive radiation and conduction is 
made complicated by the nonlinear and nonlocal 
character of the radiation phenomenon. For the 
present scattering case, the solution of the radiation 
part in terms of the temperature cannot be found 

analytically. Therefore, an exact integral equation 
method [ll] and a modified differential approxi- 
mation [12-141 are applied to the radiation part of 
the present problem. The integral terms of the two 
formulations are obtained by the quadrature methods, 
while a finite-difference scheme is applied to the 
differential terms. The objectives of the present work 
are to demonstrate the heat transfer characteristics 
of the present transient two-dimensional combined- 
mode problem and to illustrate the application of the 
two methods to the radiation part of the problem. 

2. ANALYSIS 

2.1. Exact integral formulation 
The simultaneous transport of energy by con- 

duction and radiation in a rectangular semi-trans- 
parent medium may be described in terms of the 
geometry and an associated coordinate system shown 
in Fig. 1. The present work assumes that the medium 
absorbs, emits and isotropically scatters radiation, the 
thermal and radiation properties are constant, and the 
boundary surfaces are non reflecting. The medium, 
which is initially at a uniform temperature r,, is exter- 
nally heated or cooled*from boundaries at fixed tem- 
peratures. Here, the boundary surface at z = 0 is kept 
at temperature T,, while the remaining three bound- 
aries at z = c,~ = 0 and b are kept at temperature T2. 

The energy equation in terms of the dimensionless 
temperature 0 and radiative heat flux Q’ is 

v.vo(Y,z.5)-~v.~(Y,Z,~) = ae(;gZTt) 
forO< Y<B,O<Z<C (1) 

where the operator V is defined for two-dimensional 
cases as 
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thickness in the y direction 
optical thickness in the y direction, 
Fig. 1 
thickness in the z direction 
optical thickness in the z direction, 
Fig. 1 
heat capacity 
solid-angle-integrated intensity 
contributed by the medium 
solid-angle-integrated intensity 
contributed by the boundary 
dimensionless radiation intensity 
dimensionless total blackbody 
radiation intensity 
unit vector in the y direction 
thermal conductivity 
unit vector in the z direction 
refractive index of the medium 
conduction-to-radiation parameter, 
equation (2b) 
total number of quadrature or grid 
points in the y direction 
total number of quadrature or grid 
points in the z direction 
optical distance, k = 0, 1, . . . , 4, 
equations (10) and (18) 
dimensionless heat flux 
dimensionless source function 
generalized exponential integral 
function, equation (11) 
time 
reference temperature 
temperature at t = 0 
temperature at z = 0 
temperature at y = 0, 6, and z = c 

YYZ coordinates 
Y, Z optical coordinates, Fig. 1. 

Greek symbols 
aspect ratio 
extinction coefficient 
increment of dimensionless time 
optical distance between grid points in 
the y direction 
optical distance between grid points in 
the z direction 
dimensionless temperature 
dimensionless temperature at 5 = 0 
dimensionless temperature at Z = 0 
dimensionless temperature at Y = 0, 
B, and Z = C 
directional cosine of the polar angle, 
Fig. 1 
dimensionless time 
density 
Stefan-Boltzmann constant 
azimuthal angle, Fig. 1 
scattering albedo. 

Subscripts and superscripts 
i ith grid point in they direction 
j jth grid point in the z direction 
n nth time step 
r radiation 
Y y direction 
Z z direction. 

Other symbol 
V operator, equation (2a). 
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a a 
V = rj+ zk (24 

Y and Z are the optical coordinates defined as the 
products of the geometrical coordinates and the 
extinction coefficient /I, 5 = kfl’t/pC, is the dimen- 
sionless time, B = bp, C = c/I, and the conduction-to- 
radiation parameter is defined as 

NL!!TL 
n2C7T: 

with k, p, and C, being the thermal conductivity, 
density, and heat capacity of the medium, respectively, 
8 the Stefan-Boltzmann constant, t the time, and T, 
a selected reference temperature. Here t? and Q’ are 
non-dimensionalized by dividing the temperature and 
the radiative heat flux, respectively, by T, and n28T:. 
The boundary conditions for equation (1) are 

B(Y,O,[)=@, 06 Y<B 

e(Y,C,c)=t), O< Y<B 

qo, z, 5) = t$ 0 < z d c 

8(B,Z,[)=8, o<z<c. 

The initial condition is 

(3a) 

(3b) 

(3c) 

(3d) 

e(Y,Z,O) = t%, in 0 < Y < B, 0 < Z < C. (4) 

In the present work, we take the reference temperature 
and initial temperature to be equal to T, and T,, 
respectively. Hence, 8, = 1 and B, = t&. 

The transport equation of radiation and boundary 
conditions to this problem can be expressed as 

al( y, z, /A cp) 
+p az +~(y,zP,cp) = S(Y,z) 

forO< Y<B,O<ZgC,--1 6~< l,O<cp<27r 

(5) 

and 

z(Y,O,P~CP) = I,(@,) 

0~ Y<B,-1 ,</~<0.0,<(~<2~ (6b) 

1(0, Z, fi, CP) = I,(@,) 

0 < z < c, - 1 d /i Q 1,O < cp < ~7 (6~) 

I(B, Z, P, CP) = I,(@,) 

where p is the directional cosine of the polar angle, 
cp the azimuthal angle, Z the dimensionless radiation 
intensity, I,, the dimensionless blackbody radiation 
intensity defined as 

z,(e) = 84 (7) 

and S is the dimensionless source function defined as 

S(Y, z> = (1 -W)zb(e) 

with w being the scattering albedo. Here, Z and S are 
non-dimensionalized by dividing the intensity and the 
source function by n2i?T:/n, respectively. 

Finding the formal solution of intensity, sub- 
stituting the resulting equation into equation (8) and 
transforming the resulting integrals over solid angle 
into surface and volume integrals [l 11, one can obtain 
the exact integral expression for the source function 
as 

s(Y,z) = (l-~)z,(e)+~z,(O~) 

ss ’ B[S(YZ’-Z&72)]~dY’dZ’ (9) 
0 0 

where 

po = [(Y- Y’)2+(z-Z’)*11’2 (lOa) 

p1 = [(Y- Y)* +z2]l’2 (lob) 

and S,,, is a generalized exponential integral function 
defined by 

S,(J) = 2 s cc exp C-p71 

a , t”(t*-l)“* 
dr m=l,2,3 ,.... (11) 

Using a similar procedure, one can also obtain the 
exact expressions for the y component and the z com- 
ponent of radiative flux 

c‘ B 
Q:(Y,z) = 

ss 
my’, a -w,)i 

II 0 

&(Po) 

PZ 

Q3Y.Z) = 

Y-Y’)dY’dZ’+Z ‘[zb(e,j-zb(e2jj 
s 0 

x y(Y- Y’)dY’ (12) 

” H[~(~~,~)-z~~e2)l s 0 0 

P 
x y(Z-Z’)dUdZ’+Zi 

J 
]z,(e,)-z,(e,)] 

0 

x s,(p,)dY’ (13) 

respectively. 
The system of equations to be solved is equations 

(1) and (9). The two equations are coupled by the 
divergence of radiative flux in equation (1) and the 



2678 C.-Y. WV and N.-R. Ou 

emission term in equation (9). The divergence of radi- 
ative flux may be expressed as Q.i(Y,Z) = -f% 

V*Q’(Y,Z) = (l-w) 4[&(@&(@,)1 

- 
s 

’ [I,(&)-Z&)]S;jfZdY’ 
0 

y(Y- Y’)dY’ 

s 

c 
+(Y-Bj2 AI ~ 

S3ti2)dZ, 

0 P: 

+(Z-c) &(6) - 
S3@3) (y_ Y’)dY’ 

_ 
P: 

When w = 0, S = t14 and so we do not need to solve + Y2 GW 

equation (9). 

Q;(Y,Z) = -fz+Z2 
s 

B 
41(e,)- 

S3(PJdY 

2.2. Modified differential approximation (MDA) ” P: 
For the present problem, the MDA for the radi- 

ation part can be expressed as the differential equation S’(P’)(Z-Z’)dZ’ 

P: 

V’G, =4(1-c~)Z,(Q)+3(1-o)(G,+G,)-3G, 
B 

forO< Y<B.O<Z<C (15) +(Z-c)2 
s 

z,(f),) ~ 
h(P3) dY’ 

0 P: 
with the boundary conditions 

2(aG,/az)j3 = G, atZ=O (16a) 

2(aG,jaz)/3 = -G, at Z = c (16b) 
2(aG,/aYy3 = G, atY=O (16~) 

2(aG,jau/3 = -G, at Y = B (164 

where G, and G, are the solid-angle-integrated inten- 
sity contributed respectively by the medium and the 
boundary. For the present problem G, may be ex- 
pressed in dimensionless form as 

G,(Y,Z) = Z 
s 

Bz,(e,)P 
S2(PJdY, 

II P: 

+(B- r) 
s 

h,)- 
S2@2) dZ’ 

0 P: 

+(c--3 h4- 
s 

wP3)dY’ 
0 P: 

+ Y 
s 

cz&4- s2 @4) dZ’ 

0 P: 

where 

p2 = [(Y-B)‘+(Z-Z’)2]‘:2 

p3 = [(Y-Yy+(z-c)2]“2 

p4 = [Y2+(z-z’)2]“2. 

+ y 

s 

c&692) 
cl 

y (Z-Z’) dZ’. G’Ob) 

2.3. Numerical procedure 
For the exact formulation, the system of equations 

to be solved is equations (1) and (9) for the two 
unknowns 0 and S, respectively. Crosbie and 
Schrenker [I I] have obtained highly accurate solu- 
tions for the integral equation of radiative transfer in 
a rectangular medium by using the Labatto’s quad- 
rature and singularity-subtraction technique. When 
the Gaussian quadrature is used, results of the same 
degree of accuracy can be obtained by fewer quad- 
rature points [ 111. However, solutions at the boundary 
of the medium cannot be obtained by the Gaussian 
quadrature directly. Here, we adopt either of the 
quadrature methods to solve the radiation part the 
present problem. 

The conduction part is solved by a finite-difference 
scheme. Using a central difference approximation for 
the second-order space derivatives of @ at each interior 

(17) grid point yields 

(184 

(18b) 

(18~) 

The divergence of radiative flux in equation (1) can 
be expressed in terms of G, and G, by 

2[epw _ 
AZ,_, (AZ,, , +A&, 1 

V-Q’ =4(1-w)l,(t’)+(w-l)(G,+G,). (19) 

The radiative flux in terms of G, can be expressed as 

i = 2,3.. ..,N,-1, j=2,3 ,..., N,-1, 

n=0,1,2,... (21) 
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where the subscripts i and j represent the spatial 
location in the y and z direction, respectively, the 
superscript n represents the nth time step, 
AY, = Yi+, - Yi, and AZ, = Z,, i -Z,. Using the 
Crank-Nicolson scheme to approximate the step-wise 
marching in time away from the given initial 
condition, the finite-difference approximation of 
equation (1) becomes 

where 115” = y+ ’ - 5” is a variable increment of time. 
At the beginning of time marching, to treat an abrupt 
change in boundary temperature a small At” is chosen. 
After 1 ~Wjd~ ) becomes small, a larger Ar is used. 

Equations (1) and (9) are solved using different grid 
points. Hence to solve equations (1) and (9) sim- 
ultaneously, a bicubic spline two-dimensional inter- 
polation is used. 

Gauss-Side1 iteration is used to solve equation (22). 
The temperature and the source function are iterated 
at a given time until the current iteration and the 
previous iteration meet the absolute convergence cri- 
terion that 

10 @“rre”t)(Y,Z, ~)-~(prev’ous)(Y,Z,~)l < lo-’ (23) 

at each grid point. After finding the temperature at 
each grid point at the given time step, the scheme 
calculates the radiative flux at the given time step, and 
then repeats the same calculation procedure at the 
next time step. This recursive procedure is continued 
until steady state is reached. The criterion for steady 
state is generally ]ae/ai;] < 10m4 at each grid point. 

For the MDA, the system of equations to be solved 
is equations (1) and (15). Since equation (15) is similar 
to the steady-state version of equation (1), it can be 
solved by a numerical scheme similar to that used to 
solve equation (1) at a given time step. 

3. RESULTS AND DISCUSSION 

Since accurate results for the present transient two- 
dimensional problem are not available, the results of 

the present work are benchmarked against the pub- 
lished work of two special cases : the steady-state two- 
dimensional case of Yuen and Takara [5] and the 
transient one-dimensional case of Lii and ijzisik [ 151 
and Sutton [16]. 

In the current model, the one-dimensional case cor- 
responds to the special case of B + cc. In Table 1, the 
temperature and the radiative heat flux along the z 
direction at the symmetry plane Y = B/2 of a wide 
rectangular medium are compared against those of 
the one-dimensional case. The present results are 
obtained by the Labatto’s quadrature with N, = 15. 
As shown in Table 1, the results of the wide rec- 
tangular medium are in good agreement with those of 
Sutton’s one-dimensional work [ 161. This agreement 
supports the accuracy of the present computation for 
transient cases. However, two discrepancies are found. 
The smaller discrepancy between the present results 
and Sutton’s results [16] may be attributed to the y- 
direction heat transfer of the present two-dimensional 
model, whereas the discrepancy between Lii and ozi- 
sik’s results [ 151 and the others has been addressed in 
Sutton’s work [ 161. 

The results for the steady-state problem in a rec- 
tangular medium are obtained by setting & = 1 at the 
bottom surface and e2 = 0.5 at the other surfaces. 
Tables 2 and 3 show the temperature and the heat- 
flux distributions at the symmetry plane Y = B/2 and 
the center plane Z = C/2, respectively. Those results 
shown are obtained by using 11 x 11 elements in ref. 
[5] and using 11 x 11 and 21 x 21 Gaussian quadrature 
points in the present, more general model. Each of 
Tables 2 and 3 includes three sets of results, (a), (b) 
and (c), for B = C = 0.1, 1 and 5, respectively. The 
discrepancy between the results obtained by the pre- 
sent work and those obtained by Yuen and Takara [5] 
increases as the optical size of the medium increases, as 
shown in Tables 2 and 3. The discrepancy is quite 
small for the conduction-dominated case of N = 4. 
Hence, the discrepancy is due to the solutions of the 
integral equation of radiative transfer. 

To illustrate further the accuracy of the numerical 
results, the wall heat flux at each boundary and the 
overall energy balance for a square medium with 
B = C = 1 are presented in Table 4. For various 
values of N overall energy balance is achieved within 

Table 1. Comparative results of the transient temperature distributions of a wide rec- 
tangular medium (B = 5.0, C = 1.0) and a planar medium (C = 1.0) with w = 0.5, 

N = 0.4, B0 = 0, 8, = 1.0 and 8, = 0.0, at 5 = 0.05 

Ref. z/c = 0.25 0.50 0.75 

Temperature [I51 0.4617 0.1474 0.0277 
U61 0.4888 0.1778 0.0591 

This work 0.4864 0.1775 0.0589 
Radiative flux U51 1.6436 1.2529 0.9746 

P61 1.9304 1.3305 0.8332 
This work 1.9178 1.3310 0.8391 
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Table 2(a). Comparative results of @B/2, z) and Qz (B/2,2) for square media with B = C = 0.1 and various values of N by 
three schemes 

N No. of grids or elements z/c = 1.0 0.7 0.5 0.3 0.0 

4.0 11 x II [51 

I1 x II (this work) 

21 x21 (this work) 

0.4 II x I1 I51 

llxll (this work) 

21 x21 (this work) 

0.04 I1 x II I51 

11x11 (this work) 

21 x21 (this work) 

0.004 llxll [51 

II x II (this work) 

21 x 21 (this work) 

8= 
Qz = 

8= 
Q: = 

B= 
Q: = 

B= 

Qfj : 

Q; : 
42: = 
8= 

Q; : 
Q.- = 

8= 
Qz = 

6= 
Qz = 

O= 
Q; 1 

Qz = 

0.500 0.560 0.625 0.733 1 .ooo 
7.473 10.795 17.369 28.074 41.144 
0.500 0.560 0.625 0.733 1.000 
7.474 10.795 17.369 28.075 41.144 
0.500 0.560 0.626 0.733 1.000 
7.476 10.795 17.369 28.075 41.144 
0.500 0.561 0.626 0.733 1.000 
1.100 1.542 2.305 3.503 4.932 
0.500 0.567 0.633 0.733 I .ooo 
1.100 1.542 2.304 3.504 4.932 
0.500 0.563 0.630 0.733 1 .ooo 
1.100 1.542 2.304 3.504 4.392 
0.500 0.567 0.633 0.738 1 .ooo 
0.462 0.616 0.798 1.046 1.311 
0.500 0.568 0.634 0.738 1.000 
0.462 0.616 0.798 1.033 1.310 
0.500 0.568 0.634 0.738 1.000 
0.462 0.616 0.798 1.033 1.310 
0.500 0.615 0.680 0.766 1.000 
0.398 0.524 0.648 0.801 0.949 
0.500 0.615 0.680 0.766 1.000 
0.398 0.524 0.648 0.801 0.949 
0.500 0.615 0.680 0.766 1 .ooo 
0.398 0.525 0.648 0.801 0.950 

Table 2(b). Comparative results of @B/2, Z) and Qz(B/2, Z) for square media with B = C = 1 .O and various values of N by 
three schemes 

N 

4.0 

0.4 

0.04 

0.004 

No. of grids or elements 

llxll [5] 

I I x 1 I (this work) 

21 x 21 (this work) 

llxll [5] 

Ilxll (thiswork) 

21 x 21 (this work) 

llxll [5] 

I 1 x I I (this work) 

21 x 21 (this work) 

I1 x 11 [5] 

1 I x 11 (this work) 

21 x 21 (this work) 

z,‘c = 

O= 
Qz = 

0= 
Q; I 

Q: = 
8= 

Q; I 

Q; = 
R= 

Q; 1 
Q; 1 

Q; = 
O= 

Q; = 
O= 

Qz = 
0= 

Qr = 
8= 

Q: = 

1.0 0.7 0.5 0.3 0.0 

0.500 0.564 0.630 0.737 I .ooo 
0.927 1.352 2.112 3.315 4.701 
0.500 0.564 0.630 0.736 1 .ooo 
0.941 1.354 2.100 3.311 4.740 
0.500 0.560 0.630 0.733 1.000 
0.941 1.354 2.102 3.313 4.740 
0.500 0.589 0.661 0.763 1 .ooo 
0.289 0.430 0.609 0.860 1.083 
0.500 0.593 0.663 0.759 1.000 
0.304 0.432 0.599 0.854 1.111 
0.500 0.590 0.663 0.760 1.000 
0.304 0.433 0.602 0.855 1.112 
0.500 0.653 0.726 0.807 I.000 
0.222 0.344 0.463 0.610 0.780 
0.500 0.664 0.725 0.791 I .ooo 
0.233 0.340 0.446 0.602 0.759 
0.500 0.663 0.725 0.791 1 .ooo 
0.230 0.341 0.449 0.605 0.755 
0.500 0.685 0.736 0.794 I .ooo 
0.226 0.322 0.423 0.556 0.722 
0.500 0.684 0.736 0.795 1.000 
0.220 0.324 0.424 0.570 0.723 
0.500 0.684 0.736 0.795 1.000 
0.220 0.323 0.424 0.564 0.722 
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Table 2(c). Comparative results of 0(B/2,2) and Q,(B/2, z) for square media with B = C = 5.0 and various values of N by 
three schemes 

N No. of grids or elements z/c = 1.0 0.7 0.5 0.3 0.0 

4.0 

0.4 

0.04 

0.004 

11 x 11 [51 

11 x 11 (this work) 

21 x 21 (this work) 

llxll [51 

11 x 11 (this work) 

21 x21 (this work) 

llxll ]51 

llxll (this work) 

21 x21 (this work) 

II x 11 [51 

II xl1 (this work) 

21 x21 (this work) 

f3= 
Qz = 

8= 

Q: = 
O= 

Q: = 
8= 

Qr = 
O= 

Qz = 
O= 

Qz = 
0= 

Qi 1 
Qz = 

O= 
Qz = 
o= 

Qz = 

0.500 0.567 0.640 0.755 1.000 
0.173 0.298 0.514 0.858 1.034 
0.500 0.576 0.648 0.756 1.000 
0.210 0.315 0.494 0.812 1.192 
0.500 0.576 0.648 0.756 1.000 
0.209 0.311 0.491 0.813 1.205 
0.500 0.585 0.689 0.834 1 .ooo 
0.039 0.130 0.257 0.408 0.253 
0.500 0.626 0.707 0.802 1 .ooo 
0.086 0.136 0.191 0.328 0.459 
0.500 0.626 0.707 0.802 1 .ooo 
0.086 0.136 0.195 0.330 0.452 
0.500 0.658 0.732 0.814 1.000 
0.068 0.111 0.165 0.245 0.388 
0.500 0.655 0.733 0.818 1.000 
0.071 0.119 0.160 0.275 0.388 
0.500 0.656 0.733 0.818 I .ooo 
0.071 0.116 0.164 0.275 0.390 
0.500 0.665 0.738 0.817 1.000 
0.071 0.110 0.161 0.238 0.380 
0.500 0.661 0.737 0.821 I .ooo 
0.069 0.117 0.157 0.269 0.386 
0.500 0.661 0.737 0.821 1.000 
0.068 0.115 0.161 0.269 0.386 

Table 3(a). Comparative results of 0( Y, C/2), Q;( Y, C/2) and Q,( Y, C/2) for square media with 
B = C = 0.1 and various values of N by three schemes 

N 

4.0 

0.4 

0.04 

0.004 

No. of grids or elements 

11x11 [5] 

11 x 11 (this work) 

21 x 21 (this work) 

11 x 11 [5] 

11 x 11 (this work) 

2 I x 2 I (this work) 

11x11 [5] 

I I x I I (this work) 

21 x 21 (this work) 

I I x I I [5] 

I1 x 11 (this work) 

21 x 21 (this work) 

V/B = 0.6 0.8 1.0 

t?= 
Qz = 
Q; 1 

Qz = 

Qi : 
Q; = 

Qi 1 

Q: = 
Q,, = 

O= 
Qz = 

Q;, 1 
Q: = 
Q, = 

fl= 
Q; = 
Q, = 

I) = 
Qz = 
Q;, 1 

Q: = 

Qi : 

Qz = 

Q, = 
O= 

Q: = 
Q,. = 

8= 
Q: = 
Qy = 

0.620 0.577 0.500 
16.819 11.800 0.395 
4.347 12.619 16.839 
0.620 0.577 0.500 

16.819 11.800 0.395 
4.347 12.619 16.839 
0.620 0.577 0.500 

16.819 Il.800 0.395 
4.347 12.619 16.839 
0.621 0.578 0.500 
2.241 I .668 0.395 
0.494 1.431 1.919 
0.620 0.578 0.500 
2.241 1.669 0.395 
0.494 1.431 1.919 
0.620 0.578 0.500 
2.241 1.669 0.395 
0.494 1.431 1.919 
0.628 0.583 0.500 
0.783 0.655 0.395 
0.109 0.312 0.427 
0.628 0.583 0.500 
0.783 0.655 0.395 
0.109 0.312 0.426 
0.628 0.583 0.500 
0.783 0.655 0.395 
0.109 0.312 0.426 
0.674 0.620 0.500 
0.638 0.554 0.395 
0.070 0.200 0.277 
0.674 0.620 0.500 
0.638 0.554 0.395 
0.071 0.200 0.278 
0.674 0.620 0.500 
0.638 0.554 0.395 
0.071 0.200 0.278 



2682 C.-Y. WV and N.-R. Ou 

Table 3(b). Comparative results of 0(Y, C/2), Qz(Y, C/2) and Q,( Y, C/2) for square media with 
B = C = 1 .O and various values of N by three schemes 

N No. of grids or elements Y/S = 0.6 0.8 1.0 

4.0 

0.4 

0.04 

0.004 

llxll [S] 

11 x 11 (this work) 

21 x 21 (this work) 

llxll [5] 

11 x 11 (this work) 

21 x 21 (this work) 

11x11 [5] 

11 x 11 (this work) 

21 x 21 (this work) 

llxll [5] 

11 x 11 (this work) 

21 x 21 (this work) 

O= 
Qz = 

QiI 
Qz = 

Q;: 
Qz = 
Q, = 

0= 
Qz = 

Q;r 
Qz = 
Q, = 

O= 
Qz = 
Q, = 

e= 
Qz = 

Q; 1 
Qr = 
Q;r 
Qz = 
Qg 
Qz = 
Q;z 
Qz = 
Q;I 
Qz = 
Q, = 

0.624 0.580 0.500 
2.050 1.489 0.238 
0.491 1.422 1.898 
0.624 0.580 0.500 
2.040 1.485 0.240 
0.490 1.425 1.910 
0.624 0.580 0.500 
2.045 1.485 0.240 
0.491 1.425 1.905 
0.654 0.603 0.500 
0.595 0.478 0.240 
0.107 0.305 0.404 
0.655 0.605 0.500 
0.585 0.474 0.240 
0.106 0.309 0.414 
0.654 0.603 0.500 
0.590 0.478 0.240 
0.106 0.309 0.409 
0.721 0.669 0.500 
0.454 0.381 0.245 
0.070 0.195 0.250 
0.720 0.679 0.500 
0.438 0.371 0.243 
0.069 0.195 0.260 
0.720 0.679 0.500 
0.438 0.371 0.243 
0.069 0.195 0.260 
0.733 0.711 0.500 
0.416 0.357 0.242 
0.059 0.171 0.243 
0.730 0.710 0.500 
0.417 0.357 0.241 
0.062 0.172 0.240 
0.730 0.710 0.500 
0.417 0.357 0.241 
0.060 0.172 0.240 
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Table 3(c). Comparative results of 0(Y, C/2), Qz(Y, C/2) and Q,(Y, C/2) for square media with 
B = C = 5.0 and various values of N by three schemes 

N No. of grids or elements Y/B = 0.6 0.8 1.0 

4.0 

0.4 

0.04 

0.004 

11 x 11 

llxll 

21x21 

llxll 

llxll 

21 x21 

11 x 11 

llxll 

21 x 21 

11 x 11 

11 x 11 

21 x 21 

151 

(this work) 

(this work) 

PI 

(this work) 

(this work) 

[51 

(this work) 

(this work) 

PI 

(this work) 

(this work) 

0.634 0.586 0.500 
0.496 0.344 0.039 
0.125 0.344 0.418 
0.642 0.594 0.500 
0.474 0.342 0.040 
0.126 0.366 0.478 
0.642 0.595 0.500 
0.478 0.340 0.040 
0.125 0.363 0.478 
0.681 0.614 0.500 
0.245 0.164 0.048 
0.059 0.137 0.113 
0.702 0.655 0.500 
0.183 0.141 0.048 
0.050 0.145 0.190 
0.702 0.654 0.500 
0.189 0.144 0.048 
0.046 0.135 0.191 
0.728 0.692 0.500 
0.161 0.129 0.061 
0.034 0.099 0.149 
0.727 0.690 0.500 
0.154 0.121 0.053 
0.041 0.117 0.144 
0.728 0.690 0.500 
0.160 0.126 0.055 
0.036 0.118 0.146 
0.734 0.700 0.500 
0.158 0.128 0.063 
0.032 0.095 0.153 
0.730 0.695 0.500 
0.157 0.119 0.053 
0.040 0.113 0.137 
0.730 0.695 0.500 
0.157 0.115 0.056 
0.040 0.115 0.138 

Table 4. Comparative results of the wall heat flux at each boundary for a square medium with 
B = C = 1 .O, N = 0.4, 0, = 1.0 and 0, = 0.5 by three schemes 

N 
Integral 

151 
This work 

llxll 
This work 

21 x21 

4.0 

0.4 

0.04 

0.004 

Bottom wall 
Side wall 
Top wall 
% error 

Bottom wall 
Side wall 
Top wall 
% error 

Bottom wall 
Side wall 
Top wall 
% error 

Bottom wall 
Side wall 
Top wall 
% error 

3.157 
2.824 
0.316 
0.54 
0.649 
0.518 
0.114 
2.52 
0.398 
0.298 
0.095 
3.54 
0.379 
0.274 
0.099 
1.63 

3.339 4.245 
3.027 3.931 
0.324 0.322 
0.36 0.19 
0.639 0.751 
0.529 0.635 
0.121 0.122 
1.72 0.80 
0.369 0.399 
0.276 0.301 
0.100 0.102 
1.90 1.00 
0.340 0.360 
0.248 0.263 
0.098 0.099 
1.76 0.56 
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FIG. 2. Transient temperature distributions at the symmetry 
plane of a square medium (a = 1 .O) and a rectangular med- 

ium (G( = 0.2) with N = 0.04 and C = 1 .O. 

2% by 11 x 1 l-point scheme and within 1% by 
21 x 21-point scheme. Besides, the results obtained by 
the two schemes are in good agreement for various N 
and B = C, as shown in Tables 2, 3 and 4. Hence it 
may be concluded that the 11 x 1 l-point scheme can 
generate accurate enough results. 

The transient temperature distributions at the sym- 
metry plane Y = B/2 of a square medium (c( = 1.0) 
and a wide rectangular medium (CI = 0.2) are pre- 
sented in Fig. 2. Since for the cases considered the 
optical thickness C is fixed, a smaller aspect ratio 
a = C/B corresponds to a larger width B. For a med- 
ium with a smaller tl the loss of energy from the side 
surfaces at Y = 0 and B is less and so its temperature 
distributions appear higher. As seen from Fig. 2, the 
effect of aspect ratios increases with time. Figure 2 
also shows that in the late part of the transient heating 
process a steeper temperature gradient is formed at 
the bottom of the wide rectangular medium (a = 0.2) 
with a small N. The temperature distribution in the 
wide rectangular medium is qualitatively similar to 
that in a one-dimensional slab [ 151. 

Three-dimensional sketches of the temperature at 
’ - 0.05 for w = 0.8 and w = 0.0 are presented i- 
respectively in Figs. 3(a) and (b). The temperature 
around the center of a medium with strong scattering 
((0 = 0.8) is lower than that of a medium without 
scattering (w = O.O), because the strongly scattering 
medium absorbs less energy from the heating surface 
in the transient heating process. The variation of tem- 
perature around the corner at Y = 0 and 2 = 0 in the 
strongly scattering medium in contrast with that of a 
medium without scattering is mild. This is due to the 
energy redistribution by scattering. Besides, a steeper 
temperature gradient is not formed at the bottom of 
the highly scattering square medium. 

(bi 

FIG. 3. Three-dimensional sketches of the temperature at 
t = 0.05 for media with N = 0.04 and B = C = I .O. (a) 

w = 0.8, (b) o = 0.0. 

Figures 4(a) and (b) show the effects of w and Non 
the transient temperature distributions at the sym- 
metry plane. The scattering albedo appears to have a 
small effect on the temperature distributions. Com- 
parisons of Figs. 4(a) and (b) show that the decrease 
of N increases the dependence. For a fixed optical size 
and N, the temperature distributions at the symmetry 
plane in the heating process are usually higher for the 
case with a smaller w, as shown in Figs. 3 and 4. As 
seen from Figs. 4(a) and (b), this tendency becomes 
apparent as time marches on. 

The effects of the conduction-to-radiation par- 
ameter Non the total heat flux and the radiative heat 
flux are shown in Figs. 5(a) and (b), respectively. The 
dimensionless time 5 required to attain steady state 
increases as the value of N decreases. Moreover, keep- 
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FIG. 4. Transient temperature distributions at the symmetry 
plane of a rectangular medium with B = C = 1.0. (a) 

N = 4.0, (b) N = 0.4. 

ing the medium size and the volumetric heat capacity 
fixed, the absolute time is inversely proportional to 
the thermal conductivity or the corresponding value 
of N for the cases considered. For example, we can 
interpret g = 0.0005 for N = 0.4 and 5 = 0.005 for 
N = 4 at the same absolute time. As seen from Fig. 
S(a), at the same absolute time the heat flux in the 
vicinity of the hot wall is larger for the case of larger 
N. Figure S(b) shows that, in general, the importance 
of radiative heat transfer becomes greater and radi- 
ative heat effects of the heating wall extend further 
into the medium as 5 increases. As the conduction-to- 
radiation parameter is lowered to a value of N = 0.004 
the medium is radiation-dominated and the con- 
tribution of the conductive heat flux is almost neg- 
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ii!3 1.00 

0.80 

FIG. 5. Heat flux distributions at the symmetry plane of a 
square medium with w = 0.5 and C = 1.0 for a heating 
process. (a) Total heat flux, (b) ratio of radiative heat flux 

and total heat flux. 

ligible except in the vicinity of the walls. When the 
conduction-to-radiation parameter is increased to a 
value of N = 0.4, the *medium near the hot wall is 
dominated by conduction. In the early part of the 
transient heating process, conduction is the dominant 
transfer mode for N 2 0.4, as shown in Fig. 5(b). 

Table 5 shows the heat flux at the center point of 
the bottom surface for N = 4.0 and 0.04. The dis- 
crepancies between the results obtained by the MDA 
with AY = AZ = l/20 and l/24 are less than 7 x 10 ’ 
for all the cases considered. Thus, A Y = AZ = l/24 is 
assumed to be small enough for the present problem. 
Comparisons of the results obtained by the MDA and 
those obtained by the ordinary P-3 approximation [3] 
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Table 5. Comparative results of QJB/ZO) for rectangular media with C = 1.0, 0, = 1.0, e2 = 0.5 and various aspect 
ratios 

N 
P-l P-3 MDA MDA Integral 

CI [31 [31 (AY=AZ= l/20) (AY=AZ= l/24) [51 

4.0 0.5 9.852 9.048 
1.0 5.203 4.877 
2.0 3.155 3.032 
5.0 2.640 2.592 

0.04 0.5 1.263 1.027 
1.0 1.019 0.817 
2.0 0.779 0.664 
5.0 0.625 0.584 

____~ _ 

show good agreement. Further comparisons to the 
solution of the integral equation show that the results 
obtained by both approximations are close to those 
obtained by solving the exact integral formulation 
numerically. In general, the accuracy of the MDA is 
superior to that of the P-l approximation and almost 
equivalent to that of the P-3 approximation, as shown 
in Table 5. For more discussions about the differential 
approximations for radiative transfer, a number of 
references [3, 12-14 and 17-181 are available. 
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